Please activate JavaScript!
Please install Adobe Flash Player, click here for download

Journal of Oral Science & Rehabilitation No. 1, 2017

B o n e a u g m e n t a t i o n u s i n g p o r o u s (cid:696)-TC PB o n e a u g m e n t a t i o n o f c a n i n e f r o n t a l s i n u s e s u s i n g a p o r o u s (cid:696)-t r i c a l c i u m p h o s p h a te References 1. Acocella A, Bertolai R, Nissan J, Sacco R. Clinical, histological and histomorpho- metrical study of maxillary sinus augmentation using cortico-cancellous fresh frozen bone chips. → J Craniomaxillofac Surg. 2011 Apr;39(3):192–9. 7. Goto T, Kojima T, Iijima T, Yokokura S, Kawano H, Yamamoto A, Matsuda K. Resorption of synthetic porous hydroxyapatite and replacement by newly formed bone. → J Orthop Sci. 2001 Jun;6(5):444–7. 2. Summers RB. A new concept in maxillary implant surgery: the osteotome technique. → Compendium. 1994 Feb;15(2):152, 154–6, 158 passim; quiz 162. 8. Velich N, Németh Z, Hrabák K, Suba Z, Szabó G. Repair of bony defect with combination biomaterials. → J Craniofac Surg. 2004 Jun;15(1):11–5. 3. Wetzel AC, Stich H, Cafesse RG. Bone apposition onto oral implants in the sinus area filled with diferent grafting materials. A histological study in beagle dogs. → Clin Oral Implants Res. 1995 Sep;6(3):155–63. 9. Yamada K, Umeda M, Komori T, Kawai T. Influence of hydroxyapatite (HA) chemical composition on solubility behavior and bone formation. → Kokubyo Gakkai Zasshi. 2001 Jun;50(2):90–7. 4. Zhang Y, Tangl S, Huber CD, Lin Y, Qiu L, Rausch-Fan X. Efects of Choukroun’s platelet-rich fibrin on bone regeneration in combination with deproteinized bovine bone mineral in maxillary sinus augmentation: a histological and histomorphometric study. → J Craniomaxillofac Surg. 2012 Jun;40(4):321–8. 5. Sakai K, Hashimoto Y, Baba S, Nishiura A, Matsumoto N. Efects on bone regeneration when collagen model polypeptides are combined with various sizes of alpha-tricalcium phosphate particles. → Dent Mater J. 2011 Nov;30(6):913–22. 10. Chidyllo SA, Marschall MA. Porous hydroxyapatite and tissue infection. → Plast Reconstr Surg. 1992 Jun;90(1):146–7. 11. Rosen HM. The response of porous hydroxyapatite to contiguous tissue infection. → Plast Reconstr Surg. 1991 Dec;88(6):1076–80. 12. Haas R, Donath K, Födinger M, Watzek G. Bovine hydroxyapatite for maxillary sinus grafting: comparative histomorphometric findings in sheep. → Clin Oral Implants Res. 1998 Apr;9(2):107–16. 6. Weiland AJ, Phillips TW, Randolph MA. Bone grafts: a radiologic, histologic, and biomechanical model comparing autografts, allografts, and free vascularized bone grafts. → Plast Reconstr Surg. 1984 Sep;74(3):368–79. 13. Matsuno T, Nakamura T, Kuremoto K, Notazawa S, Nakahara T, Hashimoto Y, Satoh T, Shimizu Y. Development of beta-tricalcium phosphate/collagen sponge composite for bone regeneration. → Dent Mater J. 2006 Mar;25(1):138–44. 14. Carrodeguas R, De Aza S. (cid:696)-Tricalcium phosphate: synthesis, properties and biomedical applications. → Acta Biomater. 2011 Oct;7(10):3536–46. 15. Marukawa K, Ueki K, Okabe K, Nakagawa K, Yamamoto E. Use of self-setting (cid:696)-tricalcium phosphate for maxillary sinus augmentation in rabbit. → Clin Oral Implants Res. 2011 Jun;22(6):606–12. 23. Ito T, Hashimoto Y, Baba S, Iseki T, Morita S. Bone regeneration with a collagen model polypeptides/(cid:696)-tricalcium phosphate sponge in a canine tibia defect model. → Implant Dent. 2015 Apr;24(2):197–203. 24. Li P, Hashimoto Y, Honda Y, Nakayama Y, Kobayashi N, Hara E, Yasui K, Arima Y, Matsumoto N. Evaluation of bone regeneration by porous alpha-tricalcium phosphate/atelocollagen sponge composite in critical-sized rat calvarial defects. → J Hard Tissue Biol. 2016 Jun;25(1):35–40. 25. Tokuda T, Honda Y, Hashimoto Y, Matsumoto N. Comparison of the bone forming ability of diferent sized-Alpha tricalcium phosphate granules using a critical size defect model of the mouse calvaria. → Nano Biomed. 2015 Dec;7(2):63–71. 26. Kihara H, Shiota M, Yamashita Y, Kasugai S. Biodegradation process of (cid:696)-TCP particles and new bone formation in a rabbit cranial defect model. → J Biomed Mater Res B Appl Biomater. 2006 Nov;79(2):284–91. 27. Zerbo IR, Zijderveld SA, De Boer A, Bronckers AL, De Lange G, Ten Bruggenkate CM, Burger EH. Histomorphometry of human sinus floor augmentation using a porous (cid:697)-tricalcium phosphate: a prospective study. → Clin Oral Implants Res. 2004 Dec;15(6):724–32. 16. Kitamura M, Ohtsuki C, Iwasaki H, Ogata SI, Tanihara M, Miyazaki T. The controlled resorption of porous (cid:696)-tricalcium phosphate using a hydroxypropylcellulose coating. → J Mater Sci Mater Med. 2004 Oct;15(10):1153–8. 17. Uchino T, Ohtsuki C, Kamitakahara M, Tanihara M, Miyazaki T. Apatite formation behavior on tricalcium phosphate (TCP) porous body in a simulated body fluid. → Key Eng Mater. 2006 Jun;309–11:251–4. 18. Carrodeguas RG, De Aza S. (cid:696)-Tricalcium phosphate: synthesis, properties and biomedical applications. → Acta Biomater. 2011 Oct;7(10):3536–46. 19. Jeong SM, Lee CU, Son JS, Oh JH, Fang Y, Choi BH. Simultaneous sinus lift and implantation using platelet-rich fibrin as sole grafting material. → J Craniomaxillofac Surg. 2014 Sep;42(6):990–4. 20. Watanabe K, Niimi A, Ueda M. Autogenous bone grafts in the rabbit maxillary sinus. → Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999 Jul;88(1):26–32. 21. Shimizu H, Watanabe T, Sato J. [An animal experiment using dog frontal sinuses for histological consideration of the maxillary sinus augmentation surgery for implants]. → Tsurumi Shigaku. 2003 Jan;29(1):37–56. Japanese. 22. Tatum OH Jr, Lebowitz MS, Tatum CA, Borgner R. Sinus augmentation. Rationale, development, long-term results. → N Y State Dent J. 1993 May;59(5):43–8. Journal of Oral Science & Rehabilitation Volume 3 | Issue 1/2017 51

Pages Overview